Experimental Study of High Performance Priority Queues

نویسندگان

  • David Lan Roche
  • Vijaya Ramachandran
چکیده

The priority queue is a very important and widely used data structure in computer science, with a variety of applications including Dijkstra’s Single Source Shortest Path algorithm on sparse graph types. This study presents the experimental results of a variety of priority queues. The focus of the experiments is to measure the speed and performance of highly specialized priority queues in out-of-core and memory intensive situations. The priority queues are run in-core on small input sizes as well as out-of-core using large input sizes and restricted memory. The experiments compare a variety of well-known priority queue implementations such as Binary Heap with highly specialized implementations, such as 4-ary Aligned Heap, Chowdhury and Ramachandran’s Auxiliary Buffer Heap, and Fast Binary Heap. The experiments include Cache-Aware as well as Cache-Oblivious priority queues. The results indicate that the high-performance priority queues easily outperform traditional implementations. Also, overall the Auxiliary Buffer Heap has the best performance among the priority queues considered in most in-core and out-of-core situations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring and Improving the Performance of Cache-efficient Priority Queues in Dijkstra’s Algorithm

The priority queue is an useful data structure in computation. There currently exist many implementations of this data structure, including some that are cache-aware and some cache-oblivious. In this study, we compare the performance of several implementations of priority queues in Dijkstra’s Single Source Shortest Path algorithm. We compare high performance heaps, such as the 4ary Aligned Heap...

متن کامل

CBPQ: High Performance Lock-Free Priority Queue

Priority queues are an important algorithmic component and are ubiquitous in systems and software. With the rapid deployment of parallel platforms, concurrent versions of priority queues are becoming increasingly important. In this paper, we present a novel concurrent lock-free linearizable algorithm for priority queues that scales significantly better than all known (lock-based or lock-free) p...

متن کامل

Priority Queues and Dijkstra ’ s Algorithm ∗

We study the impact of using different priority queues in the performance of Dijkstra’s SSSP algorithm. We consider only general priority queues that can handle any type of keys (integer, floating point, etc.); the only exception is that we use as a benchmark the DIMACS Challenge SSSP code [1] which can handle only integer values for distances. Our experiments were focussed on the following: 1....

متن کامل

Fast and Lock-Free Concurrent Priority Queues for Multi-Thread Systems

We present an efficient and practical lock-free implementation of a concurrent priority queue that is suitable for both fully concurrent (large multi-processor) systems as well as pre-emptive (multi-process) systems. Many algorithms for concurrent priority queues are based on mutual exclusion. However, mutual exclusion causes blocking which has several drawbacks and degrades the overall perform...

متن کامل

Fast and Lock - Free Concurrent Priority Queues for Multi - Thread Systems 1 Håkan

We present an efficient and practical lock-free implementation of a concurrent priority queue that is suitable for both fully concurrent (large multi-processor) systems as well as pre-emptive (multi-process) systems. Many algorithms for concurrent priority queues are based on mutual exclusion. However, mutual exclusion causes blocking which has several drawbacks and degrades the system’s overal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007